Panel Analysis

As the tilt-up panel is rotated from the horizontal to the vertical, the panel is subjected to bending that causes both compressive and tensile stresses that must be resisted by the concrete, reinforcing steel, or a method of strongbacking that prevents the initial bending.

The lifting inserts are normally located so that the overhanging portions of the panel sides or top will reduce the bending moments between pickup points, thereby reducing the compressive and tensile stresses in the concrete.

Tilt-up panels are usually thin and very seldom do they contain two layers of reinforcing steel. It is, therefore, necessary to allow some tensile stress in the concrete to be introduced in the tension areas. The value of allowable tensile stress in the concrete is a function of the modulus of rupture and the safety factor used. A conservative value appears to be approximately $6\sqrt{f'c}$.

Since the typical reinforcing in a panel is #4 bars at 12 in. o.c., both horizontally and vertically, it is important to be sure of the compressive strength of the concrete at the time of erection. In turn, the concrete must have sufficient tensile strength to provide the resisting strength necessary to erect the panels without cracking. This concrete quality can be obtained by having a proper mix proportion and a curing process that minimizes moisture loss. Strength tests using compression cylinders, Test Beam Break (modulus of rupture), or a Split Cylinder Test are methods of determining the value of the concrete strength and/or tensile strength of the concrete at the time of erection.

It is normal to have a minimum concrete compressive strength of 2,500 psi before the tilting operation commences. Generally, the ultimate tensile stress would be 375 psi or greater with an allowable stress of 300 psi. This assures a good tilting sequence with no cracking from tilting although some shrinkage cracks may appear.

Depending upon the quality of bond breaker used and the care taken in application, the amount of “bond” between the panel and the base slab can be from negligible to significant. Initially, a suction force must be overcome at the time of release from the base slab and estimates of this force vary considerably. Panel size, interface texture, and water between the panel face and the base slab all contribute to this additional load that is applied to the inserts and the surrounding concrete. Estimates vary from negligible to 20 psf of panel area. Experience has shown that the safety factor between the design stress and the ultimate tensile stress is sufficient to absorb the additional stresses without cracking the panels.

Minor impact loads that occur during the tilting sequence do not create bending stresses in excess of the safety factor. However, if a panel suddenly drops and is caught by the slings, or hits the crane boom or some other obstruction, an increased load will be applied to the pickup inserts.

Panels are analyzed for stresses at 0 degrees and at various angles during the tilting sequence. They are analyzed at 0 degrees because of the added loads from suction, impact, bond, and because the spans are the longest. Panels with more than one horizontal row of pickup points are analyzed at angles of rotation due to the cable configuration changing the loads to the pickup points and therefore, changing the bending moments. The resultant stresses are compared to the allowable and if exceeded, additional reinforcing or strongbacks are added depending upon the contractor’s preference.

After the tilt-up panels are analyzed vertically, they are examined continuously. The procedure for horizontal analysis is similar to the vertical examination, except that a portion of the panel resting on the ground is not considered because of continuous support.

Erection Details

The engineering service (Erection Details) which is provided by Dayton Superior is a very important part of our total tilt-up package. The location and selection of the proper lifting insert, brace type and brace anchor location, as well as the calculation of additional reinforcing steel or strongback size and location is critical for a safe and efficient panel erection.

Dayton Superior uses computers to provide fast and accurate analysis of the stresses involved in tilting a panel into position. Erection detail booklets are furnished to the contractor showing pickup locations, wall brace insert locations, crane riggings and cable lengths, reinforcing or strongback details, and specific assumptions relating to concrete strength and wind loads used in the brace design. These details are furnished at a nominal charge and are as important to the success of the operation as are the contract drawings. In order to provide these erection details to the tilt-up contractor, Dayton Superior needs the following information:

- Name of our dealer where you will purchase accessories.
- Name and address of project.
- Name of contractor.
- Job phone number.
- Name of job superintendent.
- Crane operator.
- Project plans with panel drawings.
- Number of buildings.
- Approximate number of panels.
- Number of detail booklets required.
- Date erection details required.
- Are copies of calculations required?
- Is engineer’s stamp required?
- Type of inserts preferred for tilting, bracing and strongbacking.
- Rigging type preferred for tilting.
- Are braces required? If so, what is the specified maximum wind load (psf)? Are panels to be braced to inside or outside of the building?
- Are panels cast inside face up or outside face up?
- Type and unit weight of concrete.
- Compressive strength of concrete at lift.
- Type and details of surface treatment.
- Special instructions not covered by the above items.
Panel Erection
Information

Computer Service

• All panels with openings are entered in the computer for analysis.
• Inserts are then positioned relative to the center of gravity.
• Panel dimensions and insert locations are checked by the computer for exact insert loading and flexural stress analysis.
• The bending moments and stresses in a panel are constantly changing as the panel rotates from 0° (horizontal) to approximately 90° (vertical).
• Stresses are checked at various degrees of rotation with respect to the horizontal.
• The most critical stress during lifting will normally occur somewhere between 20° and 50° rotation. The reason for this range is the different geometric shapes of the panels and number of inserts required.
• The calculations for determining the stresses at varying angles of rotation are extremely complex due to the cable geometry and the method of structural analysis required, and can only be accomplished efficiently by utilizing the accuracy and speed of the computer.
• As the cable, attached to the lifting plate, changes its angle during rotation, the force components on the lifting plate will vary causing the tension load on the insert to vary.
• When one insert's tension load increases, another insert's tension load may decrease. This is what causes the bending moments and stresses to vary throughout rotation of the panel.
• For example: the tension load at "B" in Fig. 3 is 100% tension and the tension load at "C" is 85% tension, but when rotated to 30° in Fig. 4, the tension load at "B" has decreased to 80% and the tension load at "C" has increased to 100%.
• To provide uniformity in panel detailing, Dayton Superior provides computerized or computer aided drafting graphics in addition to the stress analysis.
Panel Erection

Stress Tables and Rigging Patterns

Note: The accompanying stress tables and rigging configurations are intended for estimating purposes only and are not to be used for designing purposes.

The stress tables are valid for solid, uniformly thick panels without exposed aggregate or formliners. For panel shapes that vary from these criteria, contact a Dayton Superior Technical Services Department for assistance. A flexure (bending) stress analysis will be required.

The following tables show the actual bending stresses in pounds per square inch (psi) according to panel thickness, height and rigging configuration and are based on dead load only. Additional safety factors must be applied for any anticipated impact or dynamic loads.

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Maximum Panel Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Wide Rigging</td>
<td>4 Wide Rigging</td>
</tr>
<tr>
<td>4"</td>
<td>21'-0"</td>
</tr>
<tr>
<td>5"</td>
<td>24'-0"</td>
</tr>
<tr>
<td>6"</td>
<td>28'-0"</td>
</tr>
<tr>
<td>7"</td>
<td>29'-0"</td>
</tr>
<tr>
<td>8"</td>
<td>30'-0"</td>
</tr>
<tr>
<td>9"</td>
<td>30'-0"</td>
</tr>
<tr>
<td>10"</td>
<td>33'-0"</td>
</tr>
<tr>
<td>10-1/2"</td>
<td>34'-0"</td>
</tr>
<tr>
<td>11"</td>
<td>35'-0"</td>
</tr>
<tr>
<td>11-1/2"</td>
<td>38'-0"</td>
</tr>
<tr>
<td>12"</td>
<td>37'-0"</td>
</tr>
</tbody>
</table>

When choosing a desired rigging configuration, always make certain the panel total weight divided by the number of lifting inserts does not exceed the following:
1. Face lift insert safe working load.
2. Edge lift inserts tension safe working load.
3. 65% of the panel weight divided by the number of inserts does not exceed edge lift insert shear safe working load.

Calculate normal weight concrete at 150 pounds per cubic foot. Panels may be safely tilted when the calculated bending stress is equal to, or lower than the allowable bending stress for the compressive strength at the time of lifting. When the calculated bending stress exceeds the allowable, the panel can be tilted only if the bending stress is reduced by:
1. Increasing the number of lifting inserts;
2. Using additional, properly placed reinforcing steel;
3. Using external stiffening devices, such as strongbacks or
4. Possibly changing the concrete mix to a stronger compressive strength.

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Edge Lift Panel Stress (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel Height</td>
<td>20"</td>
</tr>
<tr>
<td>4"</td>
<td>139</td>
</tr>
<tr>
<td>5"</td>
<td>152</td>
</tr>
<tr>
<td>6"</td>
<td>166</td>
</tr>
<tr>
<td>7"</td>
<td>181</td>
</tr>
<tr>
<td>8"</td>
<td>194</td>
</tr>
<tr>
<td>9"</td>
<td>206</td>
</tr>
<tr>
<td>10"</td>
<td>215</td>
</tr>
<tr>
<td>11"</td>
<td>227</td>
</tr>
<tr>
<td>11-1/2"</td>
<td>230</td>
</tr>
<tr>
<td>12"</td>
<td>233</td>
</tr>
</tbody>
</table>

Table of Allowable Concrete Stresses (psi)

<table>
<thead>
<tr>
<th>Allowable Bending Stress</th>
<th>268</th>
<th>287</th>
<th>300</th>
<th>311</th>
<th>328</th>
<th>354</th>
<th>379</th>
</tr>
</thead>
<tbody>
<tr>
<td>f'c 2,000</td>
<td>2,300</td>
<td>2,500</td>
<td>2,700</td>
<td>3,000</td>
<td>3,500</td>
<td>4,000</td>
<td></td>
</tr>
<tr>
<td>Normal weight concrete compressive strength at time of lift.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: See page 4 before using these charts for estimating lightweight concrete panels.

R-02 Single Row Lift

Minimum Cable Length = 60 Panel Height

R-12 Single Row Lift

Minimum Cable Length = 80 Panel Height

Single Row Lift Panel Stress (psi)

<table>
<thead>
<tr>
<th>Panel Thickness</th>
<th>13"</th>
<th>14"</th>
<th>15"</th>
<th>16"</th>
<th>17"</th>
<th>18"</th>
<th>19"</th>
<th>20"</th>
<th>21"</th>
<th>22"</th>
<th>23"</th>
<th>24"</th>
<th>25"</th>
<th>26"</th>
<th>27"</th>
<th>28"</th>
<th>29"</th>
<th>30"</th>
<th>31"</th>
<th>32"</th>
<th>33"</th>
<th>34"</th>
</tr>
</thead>
<tbody>
<tr>
<td>4"</td>
<td>155</td>
<td>213</td>
<td>264</td>
<td>318</td>
<td>374</td>
<td>433</td>
<td>494</td>
<td>558</td>
<td>627</td>
<td>700</td>
<td>776</td>
<td>857</td>
<td>942</td>
<td>1,032</td>
<td>1,128</td>
<td>1,229</td>
<td>1,336</td>
<td>1,450</td>
<td>1,571</td>
<td>1,700</td>
<td>1,836</td>
<td></td>
</tr>
<tr>
<td>5"</td>
<td>163</td>
<td>223</td>
<td>281</td>
<td>343</td>
<td>408</td>
<td>476</td>
<td>548</td>
<td>624</td>
<td>705</td>
<td>792</td>
<td>885</td>
<td>985</td>
<td>1,092</td>
<td>1,205</td>
<td>1,324</td>
<td>1,450</td>
<td>1,585</td>
<td>1,728</td>
<td>1,880</td>
<td>2,041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6"</td>
<td>173</td>
<td>236</td>
<td>299</td>
<td>367</td>
<td>438</td>
<td>514</td>
<td>595</td>
<td>682</td>
<td>776</td>
<td>876</td>
<td>982</td>
<td>1,095</td>
<td>1,217</td>
<td>1,351</td>
<td>1,496</td>
<td>1,652</td>
<td>1,818</td>
<td>1,995</td>
<td>2,183</td>
<td>2,382</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7"</td>
<td>185</td>
<td>251</td>
<td>319</td>
<td>392</td>
<td>469</td>
<td>552</td>
<td>642</td>
<td>739</td>
<td>844</td>
<td>956</td>
<td>1,074</td>
<td>1,207</td>
<td>1,353</td>
<td>1,511</td>
<td>1,680</td>
<td>1,860</td>
<td>2,052</td>
<td>2,257</td>
<td>2,475</td>
<td>2,706</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8"</td>
<td>198</td>
<td>268</td>
<td>341</td>
<td>419</td>
<td>501</td>
<td>589</td>
<td>685</td>
<td>787</td>
<td>898</td>
<td>1,018</td>
<td>1,147</td>
<td>1,291</td>
<td>1,450</td>
<td>1,622</td>
<td>1,808</td>
<td>2,008</td>
<td>2,223</td>
<td>2,453</td>
<td>2,700</td>
<td>2,965</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9"</td>
<td>211</td>
<td>285</td>
<td>363</td>
<td>447</td>
<td>535</td>
<td>631</td>
<td>736</td>
<td>849</td>
<td>970</td>
<td>1,098</td>
<td>1,235</td>
<td>1,388</td>
<td>1,558</td>
<td>1,743</td>
<td>1,945</td>
<td>2,165</td>
<td>2,402</td>
<td>2,660</td>
<td>2,938</td>
<td>3,237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10"</td>
<td>225</td>
<td>304</td>
<td>388</td>
<td>479</td>
<td>577</td>
<td>683</td>
<td>799</td>
<td>924</td>
<td>1,059</td>
<td>1,206</td>
<td>1,363</td>
<td>1,539</td>
<td>1,737</td>
<td>1,957</td>
<td>2,192</td>
<td>2,444</td>
<td>2,713</td>
<td>3,001</td>
<td>3,307</td>
<td>3,639</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11"</td>
<td>239</td>
<td>323</td>
<td>413</td>
<td>509</td>
<td>613</td>
<td>725</td>
<td>847</td>
<td>980</td>
<td>1,123</td>
<td>1,279</td>
<td>1,446</td>
<td>1,632</td>
<td>1,840</td>
<td>2,069</td>
<td>2,319</td>
<td>2,590</td>
<td>2,884</td>
<td>3,199</td>
<td>3,535</td>
<td>3,893</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-1/2"</td>
<td>253</td>
<td>339</td>
<td>435</td>
<td>537</td>
<td>646</td>
<td>763</td>
<td>892</td>
<td>1,033</td>
<td>1,186</td>
<td>1,351</td>
<td>1,536</td>
<td>1,743</td>
<td>1,973</td>
<td>2,225</td>
<td>2,500</td>
<td>2,805</td>
<td>3,134</td>
<td>3,494</td>
<td>3,884</td>
<td>4,306</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12"</td>
<td>268</td>
<td>358</td>
<td>459</td>
<td>565</td>
<td>681</td>
<td>809</td>
<td>952</td>
<td>1,108</td>
<td>1,276</td>
<td>1,456</td>
<td>1,657</td>
<td>1,881</td>
<td>2,129</td>
<td>2,400</td>
<td>2,706</td>
<td>3,047</td>
<td>3,414</td>
<td>3,817</td>
<td>4,255</td>
<td>4,733</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

02-09
Panel Erection Information

Panel Erection Information

R-22 Double Row Lift

R-24 Double Row Lift

R-42 Four Row Lift

Panel Erection Information

<table>
<thead>
<tr>
<th>Panel Thickness</th>
<th>Panel Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>20' 21' 22' 23' 24' 25' 26' 27' 28' 29' 30' 31' 32' 33' 34' 35' 36' 37' 38' 39' 40' 41' 42' 43'</td>
<td></td>
</tr>
<tr>
<td>4"</td>
<td>205 226 248 271 295 320 346 373 401</td>
</tr>
<tr>
<td>5"</td>
<td>163 180 197 216 235 255 276 297 320 343 367 392 418</td>
</tr>
<tr>
<td>5-1/2"</td>
<td>148 164 180 196 214 232 251 271 291 312 334 357 380 404</td>
</tr>
<tr>
<td>6"</td>
<td>136 150 165 180 196 213 230 248 267 287 307 328 349 371 394 417</td>
</tr>
<tr>
<td>6-1/2"</td>
<td>125 138 152 168 181 196 212 229 246 264 282 301 321 342 363 384 406</td>
</tr>
<tr>
<td>7"</td>
<td>117 129 141 155 168 183 198 213 229 246 263 281 299 318 338 356 379 400 422</td>
</tr>
<tr>
<td>7-1/2"</td>
<td>109 120 132 144 157 170 184 196 213 229 246 262 279 295 313 333 353 373 393 414</td>
</tr>
<tr>
<td>8"</td>
<td>102 113 124 135 147 160 173 186 200 215 230 246 262 278 295 313 333 353 373 393 414</td>
</tr>
</tbody>
</table>

Minimum Cable Length = Panel Height — 1'0"

Minimum Main Cable Length = 4.5B

Minimum Lower Cable Length = 3B

Minimum Upper Cable Length = 3B

R-22 & R-24 Double Row Lift Panel Stress (psi)

<table>
<thead>
<tr>
<th>Panel Thickness</th>
<th>Panel Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>32' 33' 34' 35' 36' 37' 38' 39' 40' 41' 42' 43' 44' 45' 46' 47' 48' 49' 50' 51' 52' 53' 54' 55'</td>
<td></td>
</tr>
<tr>
<td>4"</td>
<td>313 333 353 374 396 418</td>
</tr>
<tr>
<td>5"</td>
<td>250 266 282 299 316 334 353 371 391 410</td>
</tr>
<tr>
<td>5-1/2"</td>
<td>227 241 256 272 287 303 320 337 355 373 391 410</td>
</tr>
<tr>
<td>6"</td>
<td>208 221 235 249 263 278 293 309 325 341 358 376 393 411</td>
</tr>
<tr>
<td>6-1/2"</td>
<td>192 204 217 230 243 257 271 285 300 315 331 347 363 380 397 414</td>
</tr>
<tr>
<td>7"</td>
<td>178 189 201 213 225 238 251 264 278 292 307 321 337 352 368 384 400 417</td>
</tr>
<tr>
<td>7-1/2"</td>
<td>166 176 187 198 210 222 234 246 259 272 286 299 314 328 343 358 373 389 405 421</td>
</tr>
<tr>
<td>8"</td>
<td>156 166 176 186 197 208 220 231 243 256 268 281 294 308 322 336 350 365 380 396 411</td>
</tr>
<tr>
<td>8-1/2"</td>
<td>146 155 165 175 185 195 206 217 228 240 252 264 276 289 302 315 328 343 357 371 386 401 416</td>
</tr>
<tr>
<td>9"</td>
<td>139 148 157 166 176 186 196 206 217 228 239 251 263 275 287 300 312 326 339 353 367 381 395 410</td>
</tr>
<tr>
<td>9-1/2"</td>
<td>131 140 148 157 166 176 185 195 205 216 226 237 249 260 272 284 296 308 321 334 347 361 374 388</td>
</tr>
<tr>
<td>10"</td>
<td>125 133 141 149 158 167 176 186 195 205 215 226 236 247 258 269 281 293 306 317 330 343 356 369</td>
</tr>
<tr>
<td>10-1/2"</td>
<td>119 126 134 142 150 159 168 176 186 195 205 214 225 235 245 256 267 279 290 302 314 326 338 351</td>
</tr>
<tr>
<td>11"</td>
<td>113 121 128 136 144 152 160 169 177 186 195 205 215 224 234 245 255 266 277 288 300 311 323 335</td>
</tr>
<tr>
<td>11-1/2"</td>
<td>109 115 123 130 137 145 153 161 170 178 187 196 205 215 224 234 244 255 266 276 287 298 309 321</td>
</tr>
<tr>
<td>12"</td>
<td>104 111 117 124 132 139 147 155 163 171 179 188 197 206 215 224 234 244 254 264 275 285 296 307</td>
</tr>
</tbody>
</table>

R-22 & R-24 Double Row Lift Panel Stress (psi)

R-42 & R-44 Four Row Lift Panel Stress (psi)
When openings are required in a tilt-up panel, they often create extreme bending stresses in the remaining concrete sections. If additional reinforcing steel is not an option, strongbacks can be used effectively to stiffen the panel. Strongbacks may be fabricated from lumber, aluminum or steel and are usually reusable.

Strongback/Shore Post

The strongback-shore system is used to reduce stresses during the lifting process and stabilize the panel during and after erection. Generally, this system should be utilized on panels where an offset opening is equal to or greater than 1/2 the panel width. The concrete leg section must be checked for stresses to determine if additional reinforcing steel or strongbacks are needed.

Strongback size should be of sufficient width and depth to carry erection loads and consist of material strong enough to withstand repeated use. The shore depth should be the same nominal size as the panel thickness, i.e., a 6" panel would require a 4x6 or 6x6 shore.

Strongback-Shore

![Diagram of Strongback-Shore System](image-url)
Panel Erection

Information

Rigging and the Crane

General

The most important phase during the construction of a tilt-up building is the erection of the wall panels. It is extremely important for the designers and contractors to plan and re-plan this portion of the job. They should direct their efforts to ensure that this important phase of construction is performed safely and efficiently.

Since there must be a close, cooperative relationship between the panel contractor and the erection subcontractor, it is advisable to select an erection sub-contractor during the early days of the project. The erection sub-contractor and crew should be well experienced in tilt-up, as panel tilting and handling is a very specialized skill.

Prior to Construction

Prior to the actual start of construction, an inspection of the site should be made by the contractor. The location of the jobsite may be such that special permits will be required to gain access to the site for heavy equipment such as the crane. As an example, permits are a common requirement for schools and church projects. These projects are usually built in residential areas where weight and size restrictions may exist.

It is advisable for the contractor to investigate restrictions on early daily start-up times. Many areas have noise abatement and dust control regulations. Also, the panel contractor and erection contractor should walk the site and determine a suitable location for the crane assembly and rigging make-up. Some local governments will not allow this activity on public streets.

It is also advisable that any problems with uneven terrain be noted at this time and dealt with prior to bringing the crane onto the jobsite.

The panel contractor and the erection contractor should always agree on a location for both the crane entrance onto the floor slab as well as the exit ramp off the floor slab. If necessary, plans should be made to thicken the floor slab at these ramp locations so the crane weight will not damage the edge of the slab.

Underground tunnels, trenches and sewer lines are a very common occurrence and can create problems. It is necessary to know the location of these underground hazards and to avoid those that may need strengthening in order to support the crane’s weight. We have often found that the location of these underground hazards is not always noted on the architect/engineer’s plans. Further investigation by the panel contractor should be made in an effort to discover these types of unknown hazards.

Overhead electric or telephone wires can be a common problem on both urban and rural job sites. It may be necessary to shut off the power in some overhead wires in order to safely operate the crane during panel erection. Most safety regulations dictate that cranes will not be allowed to work closer than ten feet to power lines.

The quality of the floor slab on a tilt-up project cannot be over emphasized due to the heavy weights that the slab will be expected to support early in its life. Equally as important as the slab, is the sub-base under the floor slab. When it comes to supporting the combined weight of the crane and tilted panel, the floor slab is no better than its sub-base. Even a thick, properly engineered floor slab with two curtains of reinforcing steel will not support the weight of the crane if the sub-base is unstable.

To insure an efficient construction procedure, careful consideration must be given to the casting location of the panels. The following two important criteria must be met if the contractor expects to have a successful project:

• Panels must be located for efficient CASTING.
• Panels must be located for efficient LIFTING.

The panel contractor should work with the erection subcontractor in developing the panel casting layout. The erector’s advice should be sought so that the panels are cast in such a position that a properly sized crane can safely reach and erect them.

Crane selection should not be looked on as merely routine. General rules for sizing the crane state that the crane capacity should be a minimum of two to three times that of the heaviest panel including the weight of the rigging gear. However, in the final analysis not only the panel weight, but also the crane’s position relative to the panel must be considered. The following questions must be answered before final determination of crane size can be established:

• How far must the crane reach to lift the panel?
• How far will the crane have to travel with the panel?
• How far will the crane have to reach to set the panel?

Crane Certification

The crane that is finally selected for the project should be properly certified. Many, if not all states have standards with which erection sub-contractors must comply. Prudent contractors make certain they have available at the jobsite documentation attesting to the crane’s certification. The contractor should also obtain a certificate of liability insurance from the erection sub-contractor.

Prior to Erection

Site Inspection

After the panels are cast and curing, the panel contractor, erection sub-contractor, and the accessory supplier should again walk the site. The terrain upon which the crane will travel should be inspected and any further corrections noted.

Corrective actions shall be taken prior to erection of the panels. Entrance and exit ramps should be checked. The entrance ramp should be built up so the crane descends slightly down
onto the slab instead of crawling up onto it. The exit ramp should be built in the same manner. On some buildings, architectural openings are large enough for the crane to exit.

In any case, do not let the crane's weight bear at the extreme edge of the slab. This is of particular importance if the crane is walking out with the added weight of the closure panel.

Equipment and Crew

The panel contractor and the erection contractor must itemize the rigging and equipment that will be needed for a proper and safe lift. The instruction manual that is supplied by Dayton Superior will specify all the types of rigging configuration and cable lengths for the project. These details should be rigidly adhered to, since they are an integral part of the erection stress calculations.

DAYTON SUPERIOR DOES NOT SPECIFY THE DIAMETER OR SAFE WORKING LOAD OF THE CABLE as this is the responsibility of the erection contractor. The panel contractor should also make a list of required tools. The list should include, but not be limited to, a compressor, drills, wrenches, a bolt-on lift plate along with extra T-13 post drilled anchors, ladders and miscellaneous hand tools. A minimum of two extra lifting hardware units should be on the job.

It is also prudent to anticipate material needs for last minute repairs. If a delay is caused for any reason, down time can add up rapidly.

The panel contractor should provide a clean working area with all obstacles removed. Members of the erection crew will be guiding a panel while it is being moved from the casting location to its position in the structure. Most of the time these crew members will be looking up at the rigging and inserts. They should not be tripping over loose debris and tools.

The erection contractor’s minimum crew should consist of the crane operator, oiler (driver), rigger foreman, and two journeyman riggers. This crew should be augmented, as required, by carpenters and laborers from the panel contractor’s work force, primarily to handle braces. In areas of the country where no erection contractors are available, the minimum crew should consist of crane operator, oiler, foreman and four to five laborers. An exception to this would be with stacked panels which require an additional two to three laborers. Consideration should also be given to having a welder standing by. A properly staffed and well coordinated erection crew is the key to successful lifting.

The crane operator must be a skilled journeyman, experienced in handling tilt-up panels. He must be able to control three motions of his crane: hoist, swing and boom hoist. It is quite normal to use all three of these functions simultaneously.

The required compression strength of the concrete must be attained. The strength of concrete, noted in the erection instructions, refers to the concrete compressive strength at the time of lifting and not the ultimate or 28 day strength. This should be checked by an independent test lab using beam or cylinder tests.

Blockouts over interior footings should not be broken out prior to the lift, particularly in rainy weather. Water under the slab could make the subgrade weak. Projecting ledgers and reinforcing steel must be brought to the attention of all concerned. All bracing that is attached to the panel prior to the lift must be inspected for proper length and type.

Panel Preparation

All standing water should be blown away from around the perimeter of the panel. Also, remove all water that might be pooled in panel openings. Standing water prevents air from entering under the panel and creates an additional load that must be overcome. These suction loads can be of such strength, that the additional load causes the lifting inserts to be overloaded.

Panel preparations should also include checking the inserts for proper location, as shown in the erection instructions. It also includes removing the void former from the insert. All inserts should be checked with a lift hardware to make certain that the hardware can be properly attached to the lifting insert. Strongbacks should also be properly installed at this time.

The required compression strength of the concrete must be attained. The strength of concrete, noted in the erection instructions, refers to the concrete compressive strength at the time of lifting and not the ultimate or 28 day strength. This should be checked by an independent test lab using beam or cylinder tests.

During the safety meeting the rigger foreman should demonstrate the proper use of the lifting hardware, bracing hardware and the proper way to hold a brace and how to use any necessary tools and equipment. If the crane is using rolling outriggers a warning to the crew to stay clear is in order.

The crane operator will be looking to for all signals. The rigger foreman must be experienced with handling panels and be totally familiar with the precise set of hand and arm signals. This will safely communicate his desires to the crane operator. Verbal instructions are all but impossible due to the noise level in the operator’s cab.

A competent rigger foreman will create and maintain a confident atmosphere during the lift. He will always remain alert to guard against overconfidence, and will not allow the crew to become careless.

Day of Erection - Safety Meeting

A safety meeting with full crew should be held before any lifting starts and the accessory supplier should also be present for this meeting. Personnel should be told to never place themselves under the panel while it is being tilted or on the blind side of the panel when the crane is traveling with it. The crew should be told to never get between the crane and the panel. A conscientious erection contractor will always advise his crew that horseplay or unnecessary talking will not be allowed.

A standard part of the safety meeting, which is normally conducted by the rigger foreman, should contain comments about the need to remain alert. Each person’s safety depends on the safe practices of others. The crew should be reminded that safety is everyone’s responsibility and that hard hats are required. It is advisable for the erection contractor to create a safety check list and have the crew members sign it at the end of the safety meeting.

The rigger foreman should be clearly identified at the safety meeting. This individual will be the one the crane operator will be looking to for all signals. The rigger foreman must be experienced with handling panels and be totally familiar with the precise set of hand and arm signals. This will safely communicate his desires to the crane operator. Verbal instructions are all but impossible due to the noise level in the operator’s cab.

A competent rigger foreman will create and maintain a confident atmosphere during the lift. He will always remain alert to guard against overconfidence, and will not allow the crew to become careless.

During the safety meeting the rigger foreman should demonstrate the proper use of the lifting hardware, bracing hardware and the proper way to hold a brace and how to use any necessary tools and equipment. If the crane is using rolling outriggers a warning to the crew to stay clear is in order.

The crew should be broken up into teams for handling bracing, rigging, and hardware attachment. Each individual’s function and responsibility should be clearly defined. The panel contractor should furnish an individual whose
Panel Erection Information

responsibility it is to clean the floor slab casting location as soon as the crane has lifted a panel and cleared the area. Regardless of how good a contractor's housekeeping is prior to the lift, there is always a certain amount of debris left behind. This individual should also make certain that all left-over forming nails are pulled from the slab.

The rigging details furnished by Dayton Superior in the erection instructions are not merely simple guidelines from which the erector can stray. THE RIGGING DETAILS DEFINE THE PROPER RIGGING FOR EACH PANEL FOR THE ERECTOR. Spreader bar widths and cable angles are integral parts of the erection stress analysis.

Proper cable lengths are important to the success of the lift. The use of cables that are shorter than the prescribed length will increase stresses in the panel and could cause the panel to crack. If an erector has a problem with rigging details or cable lengths, as they are shown in the erection instructions, he should not take it upon himself to change them. Instead, a call should be made to the technical service center from which the erection instructions originated. An alternate solution may be worked out depending on the individual situation.

Extra precautions should be taken when lifting panels with special shapes or special rigging. The erection instructions should be consulted for CAUTIONARY NOTES as to how a panel might act during lifting, and to again verify the rigging and the insert locations.

During the Lift Precautions

Wind conditions must be considered prior to lifting a panel. A 40-ton panel will easily move in a slight breeze when hanging from a crane. All spectators should be kept well away from the lift and not allowed to interfere with the proceedings.

Panels should be inspected prior to lifting for any reinforcing steel and/or ledgers that may be projecting beyond the panel edges that will create interference when the panel is being plumbed next to a previously erected panel. This happens most often at corners.

After all attachments are made to the panel, and as the rigging is being raised to take the slack out of the cables, but prior to initial loading of the inserts, all rigging gear must be inspected for proper alignment and be free of snags. If non-swivel type sheaves are used, make certain the sheaves are properly aligned. As cables are being tensioned, they invariably tend to twist and possibly rotate the lifting hardware causing side loading on the hardware. The rigger foreman should be alert for this condition and if it does happen, SHOULD HALT THE LIFT AND REALIGN THE HARDWARE.

It is the rigger foreman's responsibility to be alert to all obstacles in the path of the crane and crew. He should be alert for panels that may be stuck to the casting surface. Under such conditions, loads transferred to the lifting inserts could be more than doubled causing possible insert failure. Carefully positioned, pry bars and wedges can often be successful in helping the crane release the panel from the casting surface. Any wedges that are applied to help release the panel should be positioned at the insert lines.

Braces are almost always attached to the panel prior to lifting. Caution must be taken to be certain the braces will not be trapped by the rigging when the panel is in the upright position.

Plumbing Panels Precautions

Be alert when plumbing panels to their final upright position. Caution must be taken to make certain the panel being plumbed does not strike a previously erected panel. All personnel should be cleared of those critical areas around a panel when plumbing is being done. If the panel being plumbed is a closure panel, measurements should be taken prior to lifting to make certain the panel will fit.

Tilt-up panels should be as plumb as possible prior to attaching the brace to the floor attachment anchor. Temporary out-of-plumb-ness SHOULD NOT EXCEED 4” measured at the top of the panel. It is generally more practical to “fine tune” the panel plumb-ness with the pipe braces after the lift is completed.

There are two commonly occurring conditions that dictate that the panels be braced perfectly plumb prior to releasing the crane:

1) If the panel is going to support an adjacent spandrel or lintel panel, the supporting panel should be in an accurate final position to prevent having to adjust it later when it is supporting another panel.

2) If the bracing design calls for a subsupport system of knee, lateral, and end or cross bracing, then the panel should be accurately plumbed prior to attaching the subsupport system. Panels requiring subsupport systems must not be plumbed later as the brace subsupport system, if not removed, must be at least loosened in order to adjust the main brace, thus placing the panel in a dangerous position.

Bracing General

Do not release the crane load if, for any reason, the bracing does not appear adequate. Crane loads should always be released slowly, keeping an eye on the panel and bracing for any unusual activity. It is desirable that all bracing be complete before releasing the crane. That is, all knee, lateral, and end or cross bracing, if required, be in place. However, this is not always possible. You should always be able to install the knee bracing, however, the crane’s position near the panel may prevent the lateral bracing from being attached.

Once the crane is clear of the area, the panel contractor must complete the lateral and end or cross bracing. He must complete this phase of the bracing while remaining no more than one panel behind the erection crew. All bracing should be completed on all erected panels at the end of the work day.
Panel Erection Information

Standard Rigging Details

Rigging is an integral factor in Dayton Superior erection stress analysis. Rigging used on this project must conform to the rigging pattern specified and shown on the panel layout sheet for that individual panel.

Use spreader and equalizer beams of such length that rigging cables are at a 90 ± 5 degree angle with the equalizer beams, unless otherwise shown or noted on the panel layout sheet.

The contractor must refer to the special information sheet for the minimum cable length to be used for each type of rigging specified in these erection details. Using shorter cables than specified may overload inserts or crack panels.

WARNING

Use of shorter cables or rigging patterns other than specified can cause insert failure, cracked panels, property damage, serious injury or death.

Cables must be of sufficient diameter to minimize stretch under load. Small diameter cables may have sufficient strength, but may stretch and cause the panel to bounce and result in increased insert loads.

WARNING

The factor of safety used in the lifting design for these tilt-up panels is based on the panel being handled one time. Lifting and/or handling a panel more than one time could lead to property damage, serious injury or death.

WARNING

Contact Dayton Superior Technical Service Center for proper rigging details before attempting to use two cranes dual-rigged to lift one panel. Improper dual-rigged cranes may overload inserts resulting in property damage, serious injury or death.
Panel Erection Information

Boom Positioning
To safely erect a tilt-up panel, the crane boom must be directly over the panel’s center of lift. If the boom is not correctly positioned, the inserts have different loads than calculated in the erection analysis and the stresses in the panel will be greater than anticipated. If insert loads or panel stresses become too large, an insert will pull out of the concrete or the panel will crack.

When the crane boom is set toward the bottom of the panel (under-booming) as the panel is erected, the panel will slide backwards. When the crane boom is set toward the top of the panel (over-booming) as the panel is erected, the panel will slide forward.

When a panel slides due to excessive under-booming or over-booming, it is possible for someone to be trapped between panels, between the panel and the crane, between panel braces, etc.

Plumbing Face-Lifted Panels
When a tilt-up panel is too tall to erect using edge lift inserts and the panel must hang as plumb as possible for setting, there are three standard methods available for use. One is the “plumbing block” method, the second is the “brace and re-rig” method and the third is the “transfer” method.

Plumbing Block Method
After erecting the panel to a vertical position, set the panel on the ground and tip the panel so that the panel’s top edge rests against the rigging cables. Next, plumbing blocks supplied by others are placed around the cables and hooked over the top of the panel as shown below. The tendency of the cables to pull away from the panel will keep the plumbing blocks tight as the crane lifts the panel into position.

WARNING
Incorrect placement of the crane boom can cause over-stressing of the panel/inserts and possible sliding of the panel. Failure to correctly position the crane boom can cause property damage, serious injury or death.

NOTE: Rigging may vary from that shown.
Panel Erection Information

Brace and Re-rig Method

The "brace and re-rig" method is used when a crane does not have a second line that can safely carry the required panel weight. This method requires you to:

1. Erect the panel using the face lift inserts only.
2. Brace the panel as required.
3. Release the face lift hardware and rigging.
4. Reinstall the proper hardware and rigging onto the final set inserts.
5. With the rigging tight, remove the bracing.
6. Lift and set the panel into its final position.
7. Brace the panel as detailed.
8. Remove the final set lifting hardware and rigging.

Transfer Method

The “transfer” method is generally used when the crane has a second line that can safely carry the total panel weight. Using the transfer method requires:

1. That the panels be lifted to the vertical position using the face lift inserts and rigging only.
2. Keeping the rigging attached to the final set inserts slack with the final set hardware properly aligned with the cables.
3. After the panel is vertical and completely in the air, transfer the total panel load to the crane line and rigging attached to the final set inserts.
4. The panel is then set into its final position.
5. Brace the panel as detailed.
6. Release both the face lift and final set lifting hardware and rigging.

WARNING

Failure to properly brace panels before releasing lifting hardware may cause failures resulting in injury or death.

NOTE: Rigging may vary from that shown.